

ARKANSAS K-12 SCIENCE STANDARDS

EDUCATION FOR A NEW GENERATION

Grade 4

2015

Grade 4 Learning Progression by Topic

Grade 4								
LIFE								
SCIENCES	PHYSICAL SCIENC		CES	EARTH and SPACE SCIENCES				
Structure, Function,					Earth's Systems:			
and		Waves	Energy		Processes that Shape			
Information Processing					the Earth			
4-LS1-1 AR		4-PS4-1	4-PS3-1		4-ESS 1-1			
4-LS1-2 AR		4-PS4-3	4-PS3-2		4-ESS 2-1			
4-PS4-2				4-PS3-3	4-ESS 2-2			
				4-PS3-4	4-ESS 3-2			
				4-ESS3-1				
ENGINEERING, TECHNOLOGY, and APPLICATIONS of SCIENCE								
Engineering Design								
4-ETS1-1, 4-ETS1-2, 4-ETS1-3								

Arkansas Clarification Statement (AR)

Grade 4 Learning Progression by Disciplinary Core Idea

Grade 4									
LIFE SCIENCES From Molecules to Organisms: Structures and Processes	PHYSICAL SCIENCES Waves and Their Energy Applications in Technologies for Information Transfer		Earth's Place in	Earth's and					
4-LS1-1 AR	4-PS3-1	4-PS4-1	4-ESS1-1	4-ESS2-1	4-ESS3-1				
4-LS1-2 AR	4-PS3-2	4-PS4-3		4-ESS2-2	4-ESS3-2				
	4-PS3-3								
	4-PS3-4								
ENGINEERING, TECHNOLOGY, and APPLICATIONS of SCIENCE									

Engineering Design 4-ETS1-1, 4-ETS1-2, 4-ETS1-3

Arkansas Clarification Statement (AR)

Fourth Grade Standards Overview

The Arkansas K-12 Science Standards are based on *A Framework for K-12 Science Education* (NRC 2012) and are meant to reflect a new vision for science education. The following conceptual shifts reflect what is new about these science standards. The Arkansas K-12 Science Standards

- reflect science as it is practiced and experienced in the real world,
- build logically from Kindergarten through Grade 12,
- focus on deeper understanding as well as application of content,
- integrate practices, crosscutting concepts, and core ideas, and
- make explicit connections to literacy and math.

Science and Engineering Practices

Students are expected to demonstrate grade-appropriate proficiency in

- asking questions,
- developing and using models,
- planning and carrying out investigations,
- analyzing and interpreting data,
- constructing explanations and designing solutions,
- engaging in argument from evidence, and
- obtaining, evaluating, and communicating information.

Students are expected to use these science and engineering practices to demonstrate understanding of the disciplinary core ideas.

Crosscutting Concepts

Students are expected to demonstrate grade-appropriate understanding of

- patterns,
- cause and effect,
- energy and matter,
- systems and system models,
- interdependence of science, engineering, and technology, and
- influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for the disciplinary core ideas.

Disciplinary Core Ideas

Students are expected to continually build on and revise their knowledge of

- PS3- Energy,
- PS4- Waves and Their Applications in Technologies for Information Transfer,
- LS1- From Molecules to Organisms: Structures and Processes,
- ESS1- Earth's Place in the Universe,
- ESS2- Earth's Systems,
- ESS3- Earth and Human Activity, and
- ETS1- Engineering Design in a 3-5 developmental learning progression.

Physical Sciences (PS)

The (PS) performance expectations in fourth grade help students formulate answers to the questions, "What are waves and what are some things they can do?", "What is energy and how is it related to motion?", "How is energy transferred?", and "How can energy be used to solve a problem?" Students use a model of waves to describe patterns of waves in terms of amplitude and wavelength, and that waves can cause objects to move. By using a model, fourth grade students describe that an object can be seen when light reflected from its surface enters the eye. Students use evidence to construct an explanation of the relationship between the speed of an object and the energy of that object. Students are expected to develop an understanding that energy can be transferred from place to place by sound, light, heat, and electric currents or from object to object through collisions. Students apply their understanding of energy to design, test, and refine a device that converts energy from one form to another.

Life Sciences (LS)

The (LS) performance expectations in fourth grade help students explore the question, "How do internal and external structures support the survival, growth, behavior, and reproduction of plants and animals?" Fourth graders are expected to develop an understanding that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

Earth and Space Sciences (ESS)

The (ESS) performance expectations in fourth grade help students investigate the questions, "How can water, ice, wind and vegetation change the land?" and "What patterns of Earth's features can be determined with the use of maps?" Students are expected to develop understanding of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. They apply their knowledge of natural Earth processes to generate and compare multiple solutions to reduce the impacts of such processes on humans. In order to describe patterns of Earth's features, students analyze and interpret data from maps.

Engineering, Technology, and Applications of Science (ETS)

Engineering design performance expectations in the earliest grades introduce students to problems as situations that people want to change. With increased maturity students in third through fifth grade are able to develop these capabilities in various scientific contexts. The engineering design process involves three stages:

- **Defining and delimiting engineering problems** involves stating the problem to be solved as clearly as possible in terms of criteria for success, and constraints or limits. In this grade range the additional step of specifying criteria and constraints.
- **Designing solutions to engineering problems** begins with generating a number of different possible solutions, and then evaluating potential solutions to see which ones best meet the criteria and constraints of the problem. In this grade range students generate several alternative solutions and compare them systematically to see which best meet the criteria and constraints of the problem.
- Optimizing the engineering design involves a process in which solutions are systematically tested and refined
 and the final design is improved by trading off less important features for those that are more important. In this
 grade range students build and test models or prototypes using controlled experiments in which only one variable
 is changed from trial to trial while all other variables are kept the same.

In the fourth grade students are still developing the ability to achieve all three performance expectations (4-ETS1-1, 4-ETS1-2, 4-ETS1-3) related to a single problem in order to understand the interrelated processes of engineering design. Students can use tools and materials to solve simple problems, use visual or physical representations to convey solutions, and compare different solutions to a problem, test them, and determine which is best. These component ideas do not always follow in order. At any stage, a problem-solver can redefine the problem or generate new solutions to replace an idea that is not working.

Structure, Function, and Information Processing

Students who demonstrate understanding can:

- 4-PS4-2 Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

 [Assessment Boundary: Assessment does not include knowledge of specific colors reflected or seen, the cellular mechanisms of vision, or how the retina works.]
- **4-LS1-1** Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. [AR Clarification Statement: Examples of structures for survival could include thorns and teeth. Examples of structures for growth could include stems and the skeleton. Examples of structures for behavior could include roots and the brain. Examples of reproduction could include pistils, stamens, and eggs.] [Assessment Boundary: Assessment is limited to macroscopic structures within plant and animal systems.]
- **4-LS1-2** Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways. [Clarification Statement: Emphasis is on systems of information transfer. Use of models could include diagrams, computer simulations, and physical models.] [Assessment Boundary: Assessment does not include the mechanisms by which the brain stores and recalls information or the mechanisms of how sensory receptors function.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Developing and Using Models

Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

- Develop a model to describe phenomena. (4-PS4-2)
- Use a model to test interactions concerning the functioning of a natural system. (4-LS1-2)

Engaging in Argument from Evidence

Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).

 Construct an argument with evidence, data, and/or a model. (4-LS1-1)

Disciplinary Core Ideas

PS4.B: Electromagnetic Radiation

 An object can be seen when light reflected from its surface enters the eyes. (4-PS4-2)

LS1.A: Structure and Function

 Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction. (4-LS1-1)

LS1.D: Information Processing

 Different sense receptors are specialized for particular kinds of information, which may be then processed by the animal's brain. Animals are able to use their perceptions and memories to guide their actions. (4-LS1-2)

Crosscutting Concepts

Cause and Effect

 Cause and effect relationships are routinely identified. (4-PS4-2)

Systems and System Models

 A system can be described in terms of its components and their interactions. (4-LS1-1, 4-LS1-2)

Connections to other DCIs in fourth grade: N/A

Connections to other DCIs across grade levels: 1.PS4.B (4-PS4-2); 1.LS1.A (4-LS1-1); 1.LS1.D (4-LS1-2); 3.LS3.B (4-LS1-1); 6.LS1.A (4-LS1-1,4-LS1-2); 6.LS1.D (4-PS4-2, 4-LS1-2); 8.PS4.B (4-PS4-2)

Connections to the Arkansas English Language Arts Standards -

- **4.W.1.S** Write an opinion (argument) to convince the reader to take action or adopt a position, including logical reasons supported by evidence from relevant sources. (4-LS1-1)
- **4.CC.4.P** Use visual displays and/or audio appropriately to emphasize or enhance certain facts or details when presenting. (4-PS4-2, 4-LS1-2)

Connections to the Arkansas Mathematics Standards -

- **AR.M.4** Select and use relationships and tools. (4-PS4-2)
- **4.GM.4** Identify and draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines, identifying these in quadrilaterals and triangles. (4-PS4-2)
- **4.GM.6** Identify and/or draw lines of symmetry for a two-dimensional figure. (4-LS1-1)

Waves: Waves and Information

Students who demonstrate understanding can:

- **4-PS4-1** Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. [Clarification Statement: Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.] [Assessment Boundary: Assessment does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.]
- **4-PS4-3** Generate and compare multiple solutions that use patterns to transfer information.* [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1s and 0s representing black and white to send information about a picture, or using Morse code to send text.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Developing and Using Models

Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

 Develop a model using an analogy, example, or abstract representation to describe a scientific principle. (4-PS4-1)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

 Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution. (4-PS4-3)

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence

 Science findings are based on recognizing patterns. (4-PS4-1)

Disciplinary Core Ideas

PS4.A: Wave Properties

- Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach. (4-PS4-1)
- Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks). (4-PS4-1)

PS4.C: Information Technologies and Instrumentation

 Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. (4-PS4-3)

ETS1.C: Optimizing The Design Solution

 Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (4-PS4-3)

Crosscutting Concepts

Patterns

- Similarities and differences in patterns can be used to sort and classify natural phenomena. (4-PS4-1)
- Similarities and differences in patterns can be used to sort and classify designed products. (4-PS4-3)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

 Knowledge of relevant scientific concepts and research findings is important in engineering. (4-PS4-3)

Connections to other DCIs in fourth grade: 4.PS3.A (4-PS4-1); 4.PS3.B (4-PS4-1); 4.ETS1.A (4-PS4-3)

Connections to other DCIs across grade levels: K-2.ETS1.A (4-PS4-3); 1.PS4.C (4-PS4-3); K-2.ETS1.B (4-PS4-3); K-2.ETS1.B (4-PS4-3); 8.PS4.A (4-PS4-1); 8.PS4.C (4-PS4-3)

Connections to the Arkansas English Language Arts Standards -

4.RC.2.RF Answer explicit and inferential questions, using details from a text. (4-PS4-3)

4,RC,15.RI Integrate information from two texts on the same topic when writing or speaking about the topic. (4-PS4-3)

4.CC.4.P Use visual displays and/or audio appropriately to emphasize or enhance certain facts or details when presenting. (4-PS4-1)

Connections to the Arkansas Mathematics Standards -

AR.M.4 Select and use relationships and tools. (4-PS4-1)

4.GM.4 Identify and draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines, identifying these in quadrilaterals and triangles. (4-PS4-1)

Energy

Students who demonstrate understanding can:

- 4-PS3-1 Use evidence to construct an explanation relating the speed of an object to the energy of that object.

 [Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.]
- 4-PS3-2 Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
- **4-PS3-3** Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
- 4-PS3-4 Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.*

 [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion, light, or sound energy; or, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, and time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]
- 4-ESS3-1 Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment. [Clarification Statement: Examples of renewable energy resources could include wind energy, water behind dams, or sunlight; non-renewable energy resources are fossil fuels or fissile materials. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from the burning of fossil fuels.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in grades 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships.

 Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships. (4-PS3-3)

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

 Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. (4-PS3-2)

Disciplinary Core Ideas

PS3.A: Definitions of Energy

- The faster a given object is moving, the more energy it possesses. (4-PS3-1)
- Energy can be moved from place to place by moving objects or through sound, light, or electric currents. (4-PS3-2, 4-PS3-3)

PS3.B: Conservation of Energy and Energy Transfer

- Energy is present whenever there are moving objects, sound, light, or heat.
 When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. (4-PS3-2, 4-PS3-3)
- Light also transfers energy from place to place. (4-PS3-2)
- Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. (4-PS3-2, 4-PS3-4)

Crosscutting Concepts

Cause and Effect

 Cause and effect relationships are routinely identified and used to explain change. (4-ESS3-1)

Energy and Matter

 Energy can be transferred in various ways and between objects. (4-PS3-1, 4-PS3-2, 4-PS3-3, 4-PS3-4)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

 Knowledge of relevant scientific concepts and research findings is important in engineering. (4-ESS3-1)

Influence of Engineering, Technology, and Science on Society and the Natural World

- Over time, people's needs and wants change, as do their demands for new and improved technologies. (4-ESS3-1)
- Engineers improve existing technologies or develop new ones. (4-PS3-4)

Grade Four: Energy Arkansas K-12 Science Standards Arkansas Department of Education 2015

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Use evidence (e.g., measurements, observations, patterns) to construct an explanation. (4-PS3-1)
- Apply scientific ideas to solve design problems. (4-PS3-4)

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluate the merit and accuracy of ideas and methods.

 Obtain and combine information from books and other reliable media to explain phenomena. (4-ESS3-1)

PS3.C: Relationship Between Energy and Forces

 When objects collide, the contact forces transfer energy so as to change the objects' motions. (4-PS3-3)

PS3.D: Energy in Chemical Processes and Everyday Life

 The expression "produce energy" typically refers to the conversion of stored energy into a desired form for practical use. (4-PS3-4)

ESS3.A: Natural Resources

 Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not. (4-ESS3-1)

ETS1.A: Defining Engineering Problems

 Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.(4-PS3-4)

Connections to Nature of Science

Science is a Human Endeavor

- Most scientists and engineers work in teams. (4-PS3-4)
- Science affects everyday life. (4-PS3-4)

Connections to other DCIs in fourth grade: N/A

Connections to other DCIs across grade levels: K.PS2.B (4-PS3-3); K-2.ETS1.A (4-PS3-4); K-2.ETS1.B (4-PS3-4); 3.PS2.A (4-PS3-3); 5.PS3.D (4-PS3-4); 5.LS1.C (4-PS3-4); 5.ESS3.C (4-ESS3-1); 8.PS2.A (4-PS3-3); 8.PS2.B (4-PS3-2); 8.PS3.A (4-PS3-1, 4-PS3-2, 4-PS3-3, 4-PS3-4); 8.PS3.B (4-PS3-2, 4-PS3-3, 4-PS3-4); 6.PS3.C (4-PS3-3); 6.PS3.D (4-ESS3-1); 6.ESS3.C (4-ESS3-1); 6.ESS3.D (4-ESS3-1); 6.8.ETS1.B (4-PS3-4); 6-8.ETS1.C (4-PS3-4); 7.ESS2.A (4-ESS3-1); 7.ESS3.A (4-ESS3-1); 8.PS4.B (4-PS3-2)

Connections to the Arkansas English Language Arts Standards -

4.RC.2.RF Answer explicit and inferential questions, using details from a text. (4-PS3-1)

4.RC.15.RI Integrate information from two texts on the same topic when writing or speaking about the topic. (4-PS3-1)

4.W.2.S Write informative or explanatory pieces about a topic, using sources. (4-PS3-1)

4.W.9.P Conduct short research by gathering and paraphrasing information from relevant experiences and/or from

sources to produce a written response. (4-PS3-2, 4-PS3-3, 4-PS3-4, 4-ESS3-1)

4.W.10.P Take notes, sort evidence into categories, and include a list of sources. (4-PS3-1, 4-PS3-2, 4-PS3-3, 4-PS3-4,

4-ESS3-1)

4.W.2.S Write informative or explanatory pieces about a topic, using sources. (4-PS3-1, 4-ESS3-1)

Connections to the Arkansas Mathematics Standards -

- **AR.M.2** Applying reasoning about quantities and relationships. (4-ESS3-1)
- **AR.M.4** Select and use relationships and tools. (4-ESS3-1)
- **4.DA.2** Use a line plot to display a data set of measurements in fractions of a unit, solving problems involving addition and subtraction of fractions with like denominators using data presented in line plots. (4-ESS3-1)
- **4.CAR.8** Solve multi-step, real-world problems posed with whole numbers and having whole-number answers, using addition, subtraction, multiplication, and division; include problems in which remainders must be interpreted and represent these problems using equations with symbols standing for the unknown quantity. (4-PS3-4)

Earth's Systems: Processes that Shape the Earth

Students who demonstrate understanding can:

- 4-ESS1-1 Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. [Clarification Statement: Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time; and, a canyon with different rock layers in the walls and a river in the bottom, indicating that over time a river cut through the rock.] [Assessment Boundary: Assessment does not include specific knowledge of the mechanism of rock formation or memorization of specific rock formations and layers. Assessment is limited to relative time.]
- **4-ESS2-1** Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. [Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, or volume of water flow.] [Assessment Boundary: Assessment is limited to a single form of weathering or erosion.]
- **4-ESS2-2** Analyze and interpret data from maps to describe patterns of Earth's features. [Clarification Statement: Maps can include topographic maps of Earth's land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.]
- **4-ESS3-2** Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.* [Clarification Statement: Examples of solutions could include designing an earthquake resistant building or improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

 Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. (4-ESS2-1)

Analyzing and Interpreting Data Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

 Analyze and interpret data to make sense of phenomena using logical reasoning. (4-ESS2-2)

Disciplinary Core Ideas

ESS1.C: The History of Planet Earth

 Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed. (4-ESS1-1)

ESS2.A: Earth Materials and Systems

 Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. (4-ESS2-1)

ESS2.B: Plate Tectonics and Large-Scale System Interactions

The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth. (4-ESS2-2)

ESS2.E: Biogeology

 Living things affect the physical characteristics of their regions. (4-ESS2-1)

Crosscutting Concepts

Patterns

 Patterns can be used as evidence to support an explanation.
 (4-ESS1-1, 4-ESS2-2)

Cause and Effect

 Cause and effect relationships are routinely identified, tested, and used to explain change. (4-ESS2-1, 4-ESS3-2)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World

 Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands. (4-ESS3-2)

Grade Four: Earth's Systems: Processes that Shape the Earth
Arkansas K-12 Science Standards
Arkansas Department of Education
2015

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Identify the evidence that supports particular points in an explanation. (4-ESS1-1)
- Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution. (4-ESS3-2)

ESS3.B: Natural Hazards

 A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (4-ESS3-2)

ETS1.B: Designing Solutions to Engineering Problems

 Testing a solution involves investigating how well it performs under a range of likely conditions.

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

 Science assumes consistent patterns in natural systems. (4-ESS1-1)

Connections to other DCIs in fourth grade: 4.ETS1.C (4-ESS3-2)

Connections to other DCIs across grade levels: K-2.ETS1.A (4-ESS3-2); 2.ESS1.C (4-ESS1-1, 4-ESS2-1);

2.ESS2.A (4-ESS2-1): 2.ESS2.B (4-ESS2-2): 2.ESS2.C (4-ESS2-2): K-2.ETS1.B (4-ESS3-2): K-2.ETS1.C (4-ESS3-2):

3.LS4.A (4-ESS1-1); 5.ESS2.A (4-ESS2-1); 5.ESS2.C (4-ESS2-2); 6.ETS1.B (4-ESS3-2); 7.ESS2.A (4-ESS1-1, 4-ESS2-2,

4-ESS3-2); **7.ESS2.B** (4-ESS1-1, 4-ESS2-2); **7.ESS3.B** (4-ESS3-2);); **8.LS4.A** (4-ESS1-1); **8.ESS1.C** (4-ESS1-1, 4-ESS2-2)

Connections to the Arkansas English Language Arts Standards -

4.RC.2.RF Answer explicit and inferential questions, using details from a text. (4-ESS3-2)

4.RC.17.RI Explain how information presented visually, orally, or quantitatively (e.g., charts and graphs) contributes to a text. (4-ESS2-2)

4.RC.15.RI Integrate information from two texts on the same topic when writing or speaking about the topic. (4-ESS3-2)

4.W.9.P Conduct short research by gathering and paraphrasing information from relevant experiences and/or from sources to produce a written response. (4-ESS1-1, 4-ESS2-1)

4.W.10.P Take notes, sort evidence into categories, and include a list of sources. (4-ESS1-1, 4-ESS2-1)

4.W.2.S Write informative or explanatory pieces about a topic, using sources. (4-ESS1-1)

Connections to the Arkansas Mathematics Standards -

AR.M.2 Applying reasoning about quantities and relationships. (4-ESS1-1, 4-ESS2-1, 4-ESS3-2)

AR.M.4 Select and use relationships and tools. (4-ESS1-1, 4-ESS2-1, 4-ESS3-2)

AR.M.5 Identify relationships using structure and patterns. (4-ESS2-1)

4.DA.2 Use a line plot to display a data set of measurements in fractions of a unit, solving problems involving addition and subtraction of fractions with like denominators using data presented in line plots. (4-ESS3-2)

4.GM.8 Convert measurements of length, weight/mass, and liquid volume within the same system of measurement, metric and customary, expressing measurements of a larger unit in terms of a smaller unit. (4-ESS1-1, 4-ESS2-1)

4.GM.9 Solve real-world problems involving time intervals that may cross the hour. (4-ESS2-1, 4-ESS2-2)

4.GM.10 Solve real-world problems involving addition and subtraction of money, including the ability to make change. (4-ESS2-1, 4-ESS2-2)

4.GM.11 Solve real-world problems involving distances, liquid volume, and masses of objects, including problems that require expressing measurements given in a larger unit in terms of a smaller unit. (4-ESS2-1, 4-ESS2-2)

Engineering, Technology, and Applications of Science

Students who demonstrate understanding can:

- 4-ETS1-1 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
- 4-ETS1-2 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
- 4-ETS1-3 Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships.

 Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost. (4-ETS1-1)

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

 Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (4-ETS1-3)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

 Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem. (4-ETS1-2)

Disciplinary Core Ideas

ETS1.A: Defining and Delimiting Engineering Problems

Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (4-ETS1-1)

ETS1.B: Developing Possible Solutions

- Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (4-ETS1-2)
- At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (4-ETS1-2)
- Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (4-ETS1-3)

ETS1.C: Optimizing the Design Solution

 Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (4-ETS1-3)

Crosscutting Concepts

Influence of Science, Engineering, and Technology on Society and the Natural World

- People's needs and wants change over time, as do their demands for new and improved technologies. (4-ETS1-1)
- Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands. (4-ETS1-2)

Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: (4-PS3-4)

Connections to 3-5-ETS1.B: Designing Solutions to Engineering Problems include: Fourth Grade: (4-ESS3-2)

Connections to 3-5-ETS1.C: Optimizing the Design Solution include: Fourth Grade: (4-PS4-3)

Connections to other DCIs across grade levels: K-2.ETS1.A (4-ETS1-1, 4-ETS1-2, 4-ETS1-3); K-2.ETS1.B (4-ETS1-2);

K-2.ETS1.C (4-ETS1-2, 4-ETS1-3); **6-8.ETS1.A** (4-ETS1-1); **6-8.ETS1.B** (4-ETS1-1, 4-ETS1-2, 4-ETS1-3);

6-8.ETS1.C (4-ETS1-2, 4-ETS1-3)

Connections to the Arkansas English Language Arts Standards -

- **4.RC.2.RF** Answer explicit and inferential questions, using details from a text. (3-ETS1-2)
- **4.RC.17.RI** Explain how information presented visually, orally, or quantitatively (e.g., charts and graphs) contributes to a text. (4-ETS1-2)
- **4.RC.15.RI** Integrate information from two texts on the same topic when writing or speaking about the topic. (4-ETS1-2)
- **4.W.9.P** Conduct short research by gathering and paraphrasing information from relevant experiences and/or from sources to produce a written response. (4-ETS1-1, 4-ETS1-3)
- **4.W.10.P** Take notes, sort evidence into categories, and include a list of sources. (4-ETS1-1, 4-ETS1-3)
- **4.W.2.S** Write informative or explanatory pieces about a topic, using sources. (4-ETS1-1, 4-ETS1-3)

Connections to the Arkansas Mathematics Standards -

- **AR.M.2** Applying reasoning about quantities and relationships. (4-ETS1-1, 4-ETS1-2, 4-ETS1-3)
- AR.M.4 Select and use relationships and tools. (4-ETS1-1, 4-ETS1-2, 4-ETS1-3)
- AR.M.5 Identify relationships using structure and patterns. (4-ETS1-1, 4-ETS1-2, 4-ETS1-3)
- **4.CAR.1** Find the factor pairs for a given number in the range of 1-100, identifying whether a number is prime or composite; determine whether a given whole number in the range of 1-100 is a multiple of a given one-digit number. (4-ETS1-1, 4-ETS1-2)
- **4.CAR.7** Solve real-world problems involving multiplicative comparison, using drawings and/or equations with a symbol for the unknown number, and distinguish between multiplicative comparison and additive comparison. (4-ETS1-1, 4-ETS1-2)
- **4.CAR.8** Solve multi-step, real-world problems posed with whole numbers and having whole-number answers, using addition, subtraction, multiplication, and division; include problems in which remainders must be interpreted and represent these problems using equations with symbols standing for the unknown quantity. (4-ETS1-1, 4-ETS1-2)
- **4.CAR.11** Generate a number or shape pattern that follows a given rule, identifying apparent features of the pattern that are not explicit in the rule itself. (4-ETS1-1, 4-ETS1-2)
- **4.DA.2** Use a line plot to display a data set of measurements in fractions of a unit, solving problems involving addition and subtraction of fractions with like denominators using data presented in line plots. (4-ETS1-1, 4-ETS1-2)

Contributors

The following educators contributed to the development of this document:

Becky Adams – Hamburg School District	Chris Lynch – Black River Technical College		
W. Chance Bankhead – eSTEM Public Charter	Tammy McCloy – El Dorado School District		
Leslie Brodie – Fort Smith School District	Laura Mewborn – Pulaski County Special School District		
Stephen Brodie – UA Fort Smith STEM Center	Melissa Miller – Farmington School District		
Cindy Cardwell – Bentonville School District	Reggie Nalls – Dollarway School District		
Pam Carpenter – Bald Knob School District	Yolanda Prim - Dollarway School District		
Debbie Daily – University of Central Arkansas	Kathy Prophet – Springdale School District		
Rosa Dumond – Arkadelphia School District	Virginia Rhame – Northwest Arkansas Education Cooperative		
Tami Eggensperger – Cabot School District	Brian Schuller – DeQueen Mena Education Cooperative		
Alana Eifert – Malvern School District	Carolyn Smith – El Dorado School District		
Linda Flynn – Farmington School District	Mary Smith – Nettleton School District		
Jenny Gammill – Fayetteville School District	Melinda Smith – Jonesboro School District		
A. Wade Geery – Norfork School District	Pam Vaughan – Camden School District		
Kyla Gentry – Searcy School District	Deborah Walker – Magnolia School District		
Josh Jenkins – Springdale School District	Greg Wertenberger – Henderson University STEM Center		
Marilyn Johnson – Little Rock School District	Rebecca Wilbern – Fayetteville School District		
Christina Johnson – North Little Rock School District	Andrew Williams – University of Arkansas at Monticello		
Debbie Jones – Sheridan School District	Gene Williams – Little Rock School District		
Tifanie King – West Memphis School District	Shawna Williams – Farmington School District		
Sandra Leiterman – Little Rock School District	Cathy Wissehr – University of Arkansas at Fayetteville		
Steven Long – Rogers School District			