

ARKANSAS K-12 SCIENCE STANDARDS

EDUCATION FOR A NEW GENERATION

Grade 3

2015

Grade 3 Learning Progression by Topic

Grade 3									
PHYSICAL SCIENCES	LIFE SC	EARTH and SPACE SCIENCES							
Forces	Interdependent	Inheritance	Weather						
and	Relationships in	and	and						
Interactions	Ecosystems	Variation of Traits	Climate						
3-PS2-1 AR	3-LS2-1 AR	3-LS1-1	3-ESS2-1						
3-PS2-2	3-LS4-1	3-LS3-1	3-ESS2-2						
3-PS2-3	3-LS4-3 AR	3-LS3-2	3-ESS3-1						
3-PS2-4	3-LS4-4	3-LS4-2 AR							

ENGINEERING, TECHNOLOGY, and APPLICATIONS of SCIENCE Engineering Design 3-ETS1-1, 3-ETS1-2, 3-ETS1-3

Arkansas Clarification Statement (AR)

Grade 3 Learning Progression by Disciplinary Core Idea

Grade 3							
PHYSICAL SCIENCES	THE SCIENCES					EARTH and SPACE SCIENCES	
Motion and Stability: Forces and Interactions	From Molecules to Organisms: Structures and Processes	Ecosystems: Interactions, Energy, and Dynamics	Heredity: Inheritance and Variation of Traits	Biological Evolution: Unity and Diversity	Earth's Systems	Earth and Human Activity	
3-PS2-1 AR	3-LS1-1	3-LS2-1 AR	3-LS3-1	3-LS4-1	3-ESS2-1	3-ESS3-1	
3-PS2-2			3-LS3-2	3-LS4-2 AR	3-ESS2-2		
3-PS2-3				3-LS4-3 AR			
3-PS2-4				3-LS4-4			

ENGINEERING, TECHNOLOGY, and APPLICATIONS of SCIENCE Engineering Design 3-ETS1-1, 3-ETS1-2, 3-ETS1-3

Arkansas Clarification Statement (AR)

Third Grade Standards Overview

The Arkansas K-12 Science Standards are based on *A Framework for K-12 Science Education* (NRC 2012) and are meant to reflect a new vision for science education. The following conceptual shifts reflect what is new about these science standards. The Arkansas K-12 Science Standards

- reflect science as it is practiced and experienced in the real world,
- build logically from Kindergarten through Grade 12,
- focus on deeper understanding as well as application of content,
- integrate practices, crosscutting concepts, and core ideas, and
- make explicit connections to literacy and math.

Science and Engineering Practices

Students are expected to demonstrate grade-appropriate proficiency in

- asking questions and defining problems,
- developing and using models,
- planning and carrying out investigations,
- analyzing and interpreting data,
- constructing explanations and designing solutions,
- engaging in argument from evidence, and
- obtaining, evaluating, and communicating information.

Students are expected to use these science and engineering practices to demonstrate understanding of the disciplinary core ideas.

Crosscutting Concepts

Students are expected to demonstrate grade-appropriate understanding of

- patterns,
- cause and effect,
- scale, proportion, and quantity,
- systems and system models,
- interdependence of science, engineering, and technology, and
- influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for the disciplinary core ideas.

Disciplinary Core Ideas

Students are expected to continually build on and revise their knowledge of

- PS2- Motion and Stability: Forces and Interactions,
- LS1- Molecules to Organisms: Structures and Processes,
- LS2- Ecosystem: Interactions, Energy, and Dynamics,
- LS3- Heredity: Inheritance and Variation of Traits,
- LS4- Biological Evolution: Unity and Diversity,
- ESS2- Earth's Systems.
- ESS3- Earth and Human Activity, and
- ETS1- Engineering Design in a 3-5 developmental learning progression.

The PS performance expectations in third grade help students formulate answers to the questions, "How do equal and unequal forces on an object affect the object?" and "How can magnets be used?" Students determine the effects of balanced and unbalanced forces on the motion of an object and the cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. Students are then able to apply their understanding of magnetic interactions to define a simple design problem that can be solved with magnets.

Life Sciences (LS)

The LS performance expectations in third grade help students explore the questions, "How do organisms vary in their traits?", "How are plants, animals, and environments of the past similar or different from current plants, animals, and environments?", and "What happens to organisms when their environment changes?" Third graders are expected to develop an understanding of the idea that when the environment changes some organisms survive and reproduce, some move to new locations, some move into the transformed environment, and some die. Students develop an understanding of the similarities and differences of organisms' life cycles. Students at this level acquire an understanding that organisms have different inherited traits, and that the environment can also affect the traits that an organism develops. In addition, students construct an explanation using evidence for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. Students are expected to develop an understanding of types of organisms that lived long ago and also about the nature of their environments.

Earth and Space Sciences (ESS)

The ESS performance expectations in third grade help students investigate the questions, "What is typical weather in different parts of the world and during different times of the year?" and "How can the impact of weather-related hazards be reduced?" Students organize and use data to describe typical weather conditions expected during a particular season. By applying their understanding of weather-related hazards, students make a claim about the merit of a design solution that reduces the impacts of such hazards.

Engineering, Technology, and Applications of Science (ETS)

Engineering design performance expectations in the earliest grades introduce students to "problems" as situations that people want to change. With increased maturity students in third through fifth grade are able to develop these capabilities in various scientific contexts. The engineering design process involves three stages:

- Defining and delimiting engineering problems involves stating the problem to be solved as clearly as possible
 in terms of criteria for success, and constraints or limits. In this grade range the additional step of specifying
 criteria and constraints.
- **Designing solutions to engineering problems** begins with generating a number of different possible solutions, and then evaluating potential solutions to see which ones best meet the criteria and constraints of the problem. In this grade range students generate several alternative solutions and compare them systematically to see which best meet the criteria and constraints of the problem.
- Optimizing the engineering design involves a process in which solutions are systematically tested and refined and the final design is improved by trading off less important features for those that are more important. In this grade range students build and test models or prototypes using controlled experiments in which only one variable is changed from trial to trial while all other variables are kept the same.

In the third grade students are beginning to develop the ability to achieve all three performance expectations (3-ETS1-1, 3-ETS1-2, 3-ETS1-3) related to a single problem in order to understand the interrelated processes of engineering design. Students can use tools and materials to solve simple problems, use visual or physical representations to convey solutions, and compare different solutions to a problem, test them, and determine which is best. These component ideas do not always follow in order. At any stage, a problem-solver can redefine the problem or generate new solutions to replace an idea that is not working.

Forces and Interactions

Students who demonstrate understanding can:

- 3-PS2-1 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. [AR Clarification Statement: Examples could include an unbalanced force on one side of a box can make it start moving or balanced forces pushing on a box from both sides will not produce any motion at all.] [Assessment Boundary: Assessment is limited to one variable at a time: number, size, or direction of forces. Assessment does not include quantitative force size, only qualitative and relative. Assessment is limited to gravity being addressed as a force that pulls objects down.]
- 3-PS2-2 Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion. [Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.]
 [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]
- 3-PS2-3 Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon or the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force or how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]
- 3-PS2-4 Define a simple design problem that can be solved by applying scientific ideas about magnets.*

 [Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Asking Questions and Defining ProblemsAsking questions and defining problems in grades 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships.

- Ask questions that can be investigated based on patterns such as cause and effect relationships. (3-PS2-3)
- Define a simple problem that can be solved through the development of a new or improved object or tool. (3-PS2-4)

Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-PS2-1)
- Make observations and/or measurements to produce data to serve as the basis for

Disciplinary Core Ideas

PS2.A: Forces and Motion

- Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object's speed or direction of motion.
 (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) (3-PS2-1)
- The patterns of an object's motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it.
 (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.)
 (3-PS2-2)

Crosscutting Concepts

Patterns

 Patterns of change can be used to make predictions. (3-PS2-2)

Cause and Effect

- Cause and effect relationships are routinely identified. (3-PS2-1)
- Cause and effect relationships are routinely identified, tested, and used to explain change. (3-PS2-3)

evidence for an explanation of a phenomenon or test a design solution. (3-PS2-2)

Connections to Nature of Science

Science Knowledge is Based on Empirical Evidence

 Science findings are based on recognizing patterns. (3-PS2-2)

Scientific Investigations Use a Variety of Methods

 Science investigations use a variety of methods, tools, and techniques. (3-PS2-1)

PS2.B: Types of Interactions

- Objects in contact exert forces on each other. (3-PS2-1)
- Electric and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other. (3-PS2-3, 3-PS2-4)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

 Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the engineering design process. (3-PS2-4)

Connections to other DCIs in third grade: N/A

Connections to other DCIs across grade levels: K.PS2.A (3-PS2-1); K.PS2.B (3-PS2-1); K.PS3.C (3-PS2-1); K-2.ETS1.A (3-PS2-4); 1.ESS1.A (3-PS2-2); 4.PS4.A (3-PS2-2); 3-5.ETS1.A (3-PS2-4); 5.PS2.B (3-PS2-1);

7.ESS2.C (3-PS2-1); 8.PS2.A (3-PS2-1, 3-PS2-2); 8.PS2.B (3-PS2-3, 3-PS2-4); 8.ESS1.B (3-PS2-1, 3-PS2-2)

Connections to the Arkansas English Language Arts Standards -

- **3.RC.1.RF** Ask questions about key details in a text. (3-PS2-1, 3-PS2-3)
- 3.RC.2.RF Answer questions about key details in a text. (3-PS2-1, 3-PS2-3)
- **3.RC.15.RI** Describe how each successive part or paragraph builds on earlier sections.(3-PS2-3)
- 3.W.9.P Conduct short research by gathering information from relevant experiences and/or print and digital sources to produce a response. (3-PS2-1, 3-PS2-2)
- 3.W.10.P Take notes from sources and sort evidence into categories. (3-PS2-1, 3-PS2-2)
- **3.CC.2.OL** Ask and answer questions about what a speaker says to gather additional information and clarify understanding. (3-PS2-3)

- **AR.M.2** Applying reasoning about quantities and relationships. (3-PS2-1)
- **AR.M.5** Identify relationships using structure and patterns. (3-PS2-1)
- **3.GM.8** Measure and estimate liquid volumes and masses of objects using standard units. (3-PS2-1)
- **3.GM.9** Solve one-step real-world problems involving liquid volumes and masses of objects in the same units, using all four operations. (3-PS2-1)

Interdependent Relationships in Ecosystems

Students who demonstrate understanding can:

- **3-LS2-1** Construct an argument that some animals form groups that help members survive. [AR Clarification Statement: Examples could include ant colonies, herds of bison, or hives of bees.]
- **3-LS4-1** Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago. [Clarification Statement: Examples of data could include type, size, and distributions of fossilized organisms. Examples of fossils and environments could include marine fossils found on dry land, tropical plant fossils found in Arctic areas, and fossils of extinct organisms.] [Assessment Boundary: Assessment does not include identification of specific fossils or living plants and animals. Assessment is limited to major fossil types and relative ages.]
- 3-LS4-3 Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. [AR Clarification Statement: Examples of evidence could include needs and characteristics of the organisms and habitats involved. The organisms and their habitat make up a system in which the parts depend on each other for survival.]
- 3-LS4-4 Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.* [Clarification Statement: Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.]
 [Assessment Boundary: Assessment is limited to a single environmental change. Assessment does not include the greenhouse effect or climate change.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

 Analyze and interpret data to make sense of phenomena using logical reasoning. (3-LS4-1)

Engaging in Argument from Evidence Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed worlds.

- Construct an argument with evidence, data, and/or a model. (3-LS2-1)
- Construct an argument with evidence. (3-LS4-3)
- Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. (3-LS4-4)

Disciplinary Core Ideas

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

 When the environment changes in ways that affect a place's physical characteristics, temperature, or availability of resources, some organisms survive and reproduce, others move to new locations, yet others move into the transformed environment, and some die. (3-LS4-4)

LS2.D: Social Interactions and Group

 Being part of a group helps animals obtain food, defend themselves, and cope with changes. Groups may serve different functions and vary dramatically in size. (3-LS2-1)

LS4.A: Evidence of Common Ancestry and Diversity

- Some kinds of plants and animals that once lived on Earth are no longer found anywhere. (3-LS4-1)
- Fossils provide evidence about the types of organisms that lived long ago and also about the nature of their environments. (3-LS4-1)

LS4.C: Adaptation

 For any particular environment, some kinds of organisms survive well, some survive less well, and some cannot survive at all. (3-LS4-3)

Crosscutting Concepts

Cause and Effect

 Cause and effect relationships are routinely identified and used to explain change.
 (3-LS2-1, 3-LS4-3)

Scale, Proportion, and Quantity

 Observable phenomena exist from very short to very long time periods. (3-LS4-1)

Systems and System Models

 A system can be described in terms of its components and their interactions. (3-LS4-4)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

 Knowledge of relevant scientific concepts and research findings is important in engineering. (3-LS4-4)

LS4.D: Biodiversity and Humans

 Populations live in a variety of habitats, and change in those habitats affects the organisms living there. (3-LS4-4)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

 Science assumes consistent patterns in natural systems. (3-LS4-1)

Connections to other DCIs in third grade: 3.ESS2.D (3-LS4-3); 3.ESS3.B (3-LS4-4)

Connections to other DCIs across grade levels: K.ESS3.A (3-LS4-3, 3-LS4-4); K-2.ETS1.A (3-LS4-4); 1.LS1.B (3-LS2-1); 2.LS2.A (3-LS4-3, 3-LS4-4); 2.LS4.D (3-LS4-3, 3-LS4-4); 4.ESS1.C (3-LS4-1); 4.ESS3.B (3-LS4-4); 3-5.ETS1.A (3-LS4-4); 6.ESS3.C (3-LS4-4); 7.LS2.A (3-LS2-1, 3-LS4-1, 3-LS4-3, 3-LS4-4); 7.LS2.C (3-LS4-4); 7.ESS2.B (3-LS4-1); 8.LS4.A (3-LS4-1); 8.LS4.B (3-LS4-3); 8.LS4.C (3-LS4-3, 3-LS4-4); 8.ESS1.C (3-LS4-1, 3-LS4-3, 3-LS4-4)

Connections to the Arkansas English Language Arts Standards -

- **3.RC.1.RF** Ask questions about key details in a text. (3-LS2-1, 3-LS4-1, 3-LS4-3, 3-LS4-4)
- 3.RC.2.RF Answer questions about key details in a text. (3-LS2-1, 3-LS4-1, 3-LS4-3, 3-LS4-4)
- **3.RC.3.RF** Summarize multi-paragraph texts, providing key details to demonstrate understanding of the central message or topic. (3-LS4-1, 3-LS4-3, 3-LS4-4)
- **3.W.1.S** Write an opinion to convince the reader to take an action or adopt a position with logical reasons supported by evidence from various sources. (3-LS2-1, 3-LS4-1, 3-LS4-3, 3-LS4-4)
- **3.W.2.S** Write informative or explanatory pieces about a topic, using sources. (3-LS4-1, 3-LS4-3, 3-LS4-4)
- **3.W.10.P** Take notes from sources and sort evidence into categories. (3-LS4-1)
- **3.CC.3.P** Use relevant, descriptive details to orally report on a topic or text, tell a story, or recount an experience, speaking clearly at an understandable pace. (3-LS4-3, 3-LS4-4)

- **AR.M.2** Applying reasoning about quantities and relationships. (3-LS4-1, 3-LS4-3, 3-LS4-4)
- AR.M.4 Select and use relationships and tools. (3-LS2-1, 3-LS4-1, 3-LS4-3, 3-LS4-4)
- AR.M.5 Identify relationships using structure and patterns. (3-LS4-1)
- **3.CAR.1** Use computational fluency to add and subtract three-digit whole numbers, using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. (3-LS2-1)
- **3.CAR.4** Use strategies to multiply one-digit numbers by multiples of 10 ranging from 10-90; strategies are based on place value and properties of operations (e.g., 9 · 80, 5 · 60). (3-LS2-1)
- **3.DA.1** Represent a data set with multiple categories, using a scaled picture graph, scaled bar graph, and a line plot. (3-LS4-3)
- 3.DA.2 Solve one and two-step problems, using categorical data represented with a scaled picture graph, scaled bar graph, and a line plot. (3-LS4-3)
- **3.GM.5** Describe area as the number of unit squares that cover a plane figure without gaps and overlaps. (3-LS4-1)
- **3.NPV.1** Round four-digit whole numbers to the nearest 10 or 100, using place value understanding. (3-LS2-1)
- **3.NPV.2** Identify the value of thousands, hundreds, tens, and ones place in a four-digit number. (3-LS2-1)
- **3.NPV.3** Read and write whole numbers up to 10,000, using base ten numerals, word form, and a variety of expanded forms. (3-LS2-1)
- **3.NPV.4** Compare two four-digit numbers using symbols (<, =, >) based on the value of thousands, hundreds, tens, and ones in the given numbers. (3-LS2-1)

Inheritance and Variation of Traits: Life Cycles and Traits

Students who demonstrate understanding can:

- 3-LS1-1 Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. [Clarification Statement: Changes organisms go through during their life form a pattern.] [Assessment Boundary: Assessment of plant life cycles is limited to those of flowering plants. Assessment does not include details of human reproduction.]
- 3-LS3-1 Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. [Clarification Statement: Patterns are the similarities and differences in traits shared between offspring and their parents, or among siblings. Emphasis is on organisms other than humans.] [Assessment Boundary: Assessment does not include genetic mechanisms of inheritance and prediction of traits. Assessment is limited to non-human examples.]
- **3-LS3-2** Use evidence to support the explanation that traits can be influenced by the environment. [Clarification Statement: Examples of the environment affecting a trait could include insufficient water stunting normally tall plants; and, a pet dog becoming overweight that is given too much food and too little exercise.]
- 3-LS4-2 Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. [AR Clarification Statement: Examples of cause and effect relationships could be plants of the same species with larger thorns may be less likely to be eaten; and, animals of the same species with more effective camouflage or coloration may be more likely to survive and produce offspring.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Developing and Using Models

Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

 Develop models to describe phenomena. (3-LS1-1)

Analyzing and Interpreting Data

Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations.

When possible and feasible, digital tools should be used.

 Analyze and interpret data to make sense of phenomena using logical reasoning. (3-LS3-1)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

 Use evidence (e.g., observations, patterns) to support an explanation. (3-LS3-2)

Disciplinary Core Ideas

LS1.B: Growth and Development of Organisms

 Reproduction is essential to the continued existence of every kind of organism. Plants and animals have unique and diverse life cycles. (3-LS1-1)

LS3.A: Inheritance of Traits

- Many characteristics of organisms are inherited from their parents. (3-LS3-1)
- Other characteristics result from individuals' interactions with the environment, which can range from diet to learning. Many characteristics involve both inheritance and environment. (3-LS3-2)

LS3.B: Variation of Traits

- Different organisms vary in how they look and function because they have different inherited information. (3-LS3-1)
- The environment also affects the traits that an organism develops. (3-LS3-2)

LS4.B: Natural Selection

 Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing. (3-LS4-2)

Crosscutting Concepts

Patterns

- Similarities and differences in patterns can be used to sort and classify natural phenomena. (3-LS3-1)
- Patterns of change can be used to make predictions. (3-LS1-1)

Cause and Effect

 Cause and effect relationships are routinely identified and used to explain change. (3-LS3-2, 3-LS4-2)

Confidentions to Nature of Science

Scientific Knowledge is Based on Empirical Evidence

 Science findings are based on recognizing patterns. (3-LS1-1)

Connections to other DCIs in third grade: 3.LS4.C (3-LS4-2)

Connections to other DCIs across grade levels: 1.LS3.A (3-LS3-1, 3-LS4-2); 1.LS3.B (3-LS3-1); 6.LS1.B (3-LS1-1, 3-LS3-2); 6.LS3.B (3-LS3-1, 3-LS4-2); 7.LS2.A (3-LS3-2); 8.LS3.A (3-LS3-1); 8.LS4.B (3-LS4-2)

Connections to the Arkansas English Language Arts Standards -

- **3.RC.1.RF** Ask questions about key details in a text. (3-LS3-1, 3-LS3-2, 3-LS4-2)
- **3.RC.2.RF** Answer questions about key details in a text. (3-LS3-1, 3-LS3-2, 3-LS4-2)
- **3.RC.3.RF** Summarize multi-paragraph texts, providing key details to demonstrate understanding of the central message or topic. (3-LS3-1, 3-LS3-2, 3-LS4-2)
- **3.RC.17.RI** Explain how information gained from illustrations (e.g., maps, photographs) and the words in a text, contribute to understanding a text. (3-LS1-1)
- **3.W.2.S** Write informative or explanatory pieces about a topic, using sources. (3-LS3-1, 3-LS3-2, 3-LS4-2)
- **3.CC.3.P** Use relevant, descriptive details to orally report on a topic or text, tell a story, or recount an experience, speaking clearly at an understandable pace. (3-LS3-1, 3-LS3-2, 3-LS4-2)
- **3.CC.4.P** Use visual displays and/or audio appropriately to emphasize or enhance certain facts or details when presenting. (3-LS1-1)

- AR.M.2 Applying reasoning about quantities and relationships. (3-LS3-1, 3-LS3-2, 3-LS4-2)
- AR.M.4 Select and use relationships and tools. (3-LS1-1, 3-LS3-1, 3-LS3-2, 3-LS4-2)
- **3.CAR.1** Use computational fluency to add and subtract three-digit whole numbers, using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. (3-LS1-1)
- **3.CAR.4** Use strategies to multiply one-digit numbers by multiples of 10 ranging from 10-90; strategies are based on place value and properties of operations (e.g., 9 · 80, 5 · 60). (3-LS1-1)
- **3.DA.1** Represent a data set with multiple categories, using a scaled picture graph, scaled bar graph, and a line plot. (3-LS4-2)
- **3.DA.2** Solve one and two-step problems, using categorical data represented with a scaled picture graph, scaled bar graph, and a line plot. (3-LS4-2)
- **3.GM.5** Describe area as the number of unit squares that cover a plane figure without gaps and overlaps. (3-LS3-1, 3-LS3-2)
- **3.NPV.1** Round four-digit whole numbers to the nearest 10 or 100, using place value understanding. (3-LS1-1)
- **3.NPV.2** Identify the value of thousands, hundreds, tens, and ones place in a four-digit number. (3-LS1-1)
- **3.NPV.3** Read and write whole numbers up to 10,000, using base ten numerals, word form, and a variety of expanded forms. (3-LS1-1)
- **3.NPV.4** Compare two four-digit numbers using symbols (<, =, >) based on the value of thousands, hundreds, tens, and ones in the given numbers. (3-LS1-1)
- 3.NPV.5 Compare two fractions with the same numerator or denominator by reasoning about their size based on the same whole; use symbols (<, =, >) and justify the conclusion using visual fraction models, concrete objects, or words. (3-LS1-1)
- **3.NPV.8** Identify and represent a unit fraction as a number on the number line. Fractions include: denominators 2, 3, 4, 6, and 8. (3-LS1-1)
- **3.NPV.9** Identify and represent a non-unit fraction as a number on the number line, including fractions greater than one. Fractions include: denominators 2, 3, 4, 6, and 8. (3-LS1-1)
- **3.NPV.10** Decompose and compose a non-unit fraction a/b as the quantity formed by the sum of unit fractions. Fractions include: denominators 2, 3, 4, 6, and 8. (3-LS1-1)

Weather and Climate

Students who demonstrate understanding can:

- 3-ESS2-1 Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. [Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.}
- 3-ESS2-2 Obtain and combine information to describe climates in different regions of the world.
- 3-ESS3-1 Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.*

 [Clarification Statement: Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind resistant roofs, and lightning rods.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

 Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships. (3-ESS2-1)

Engaging in Argument from Evidence Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).

 Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. (3-ESS3-1)

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.

 Obtain and combine information from books and other reliable media to explain phenomena. (3-ESS2-2)

Disciplinary Core Ideas

ESS2.D: Weather and Climate

- Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next. (3-ESS2-1)
- Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years. (3-ESS2-2)

ESS3.B: Natural Hazards

 A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. (3-ESS3-1)

Crosscutting Concepts

Patterns

 Patterns of change can be used to make predictions.
 (3-ESS2-1, 3-ESS2-2)

Cause and Effect

 Cause and effect relationships are routinely identified, tested, and used to explain change. (3-ESS3-1)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World

 Engineers improve existing technologies or develop new ones to increase their benefits (e.g., better artificial limbs), decrease known risks (e.g., seatbelts in cars), and meet societal demands (e.g., cell phones). (3-ESS3-1)

Connections to Nature of Science

Science is a Human Endeavor

 Science affects everyday life. (3-ESS3-1)

Connections to other DCIs in third grade: N/A

Connections to other DCIs across grade levels: K.ESS2.D (3-ESS2-1); K.ESS3.B (3-ESS3-1); K-2.ETS1.A (3-ESS3-1); 4.ESS2.A (3-ESS2-1); 4.ESS3.B (3-ESS3-1); 3-5.ETS1.A (3-ESS3-1); 5.ESS2.A (3-ESS2-1); 6.ESS2.D (3-ESS2-1, 3-ESS2-2); 7.ESS2.C (3-ESS2-1, 3-ESS2-2); 7.ESS3.B (3-ESS3-1)

Connections to the Arkansas English Language Arts Standards -

- **3.RC.1.RF** Ask questions about key details in a text. (3-ESS2-2)
- **3.RC.2.RF** Answer questions about key details in a text. (3-ESS2-2)
- **3.RC.14.RI** Compare and contrast two texts on the same topic, identifying key details from each text. (3-ESS2-2)
- **3.W.1.S** Write an opinion to convince the reader to take an action or adopt a position with logical reasons supported by evidence from various sources. (3-ESS3-1)
- **3.W.9.P** Conduct short research by gathering information from relevant experiences and/or print and digital sources to produce a response. (3-ESS3-1)
- **3.W.10.P** Take notes from sources and sort evidence into categories. (3-ESS2-2)

- AR.M.2 Applying reasoning about quantities and relationships. (3-ESS2-1, 3-ESS2-2, 3-ESS3-1)
- AR.M.4 Select and use relationships and tools. (3-ESS2-1, 3-ESS2-2, 3-ESS3-1)
- AR.M.5 Identify relationships using structure and patterns. (3-ESS2-1)
- **3.DA.1** Represent a data set with multiple categories, using a scaled picture graph, scaled bar graph, and a line plot. (3-ESS2-1)
- **3.DA.2** Solve one and two-step problems, using categorical data represented with a scaled picture graph, scaled bar graph, and a line plot. (3-ESS2-1)
- **3.GM.8** Measure and estimate liquid volumes and masses of objects using standard units. (3-ESS2-1)
- **3.GM.9** Solve one-step real-world problems involving liquid volumes and masses of objects in the same units, using all four operations. (3-ESS2-1)

Engineering, Technology, and Applications of Science

Students who demonstrate understanding can:

- 3-ETS1-1 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
- 3-ETS1-2 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
- 3-ETS1-3 Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships.

 Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost. (3-ETS1-1)

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

 Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-ETS1-3)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

 Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem. (3-ETS1-2)

Disciplinary Core Ideas

ETS1.A: Defining and Delimiting Engineering Problems

Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria).
 Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (3-ETS1-1)

ETS1.B: Developing Possible Solutions

- Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (3-ETS1-2)
- At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (3-ETS1-2)
- Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (3-ETS1-3)

ETS1.C: Optimizing the Design Solution

 Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (3-ETS1-3)

Crosscutting Concepts

Influence of Science, Engineering, and Technology on Society and the Natural World

- People's needs and wants change over time, as do their demands for new and improved technologies. (3-ETS1-1)
- Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands. (3-ETS1-2)

- Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: (4-PS3-4)
- Connections to 3-5-ETS1.B: Designing Solutions to Engineering Problems include: Fourth Grade: (4-ESS3-2)
- Connections to 3-5-ETS1.C: Optimizing the Design Solution include: Fourth Grade: (4-PS4-3)
- Connections to other DCIs across grade levels: K-2.ETS1.A (3-ETS1-1, 3-ETS1-2, 3-ETS1-3); K-2.ETS1.B (3-ETS1-2);
- K-2.ETS1.C (3-ETS1-2, 3-ETS1-3); 6-8.ETS1.A (3-ETS1-1); 6-8.ETS1.B (3-ETS1-1, 3-ETS1-2, 3-ETS1-3);
- **6-8.ETS1.C** (3-ETS1-2, 3-ETS1-3)
- Connections to the Arkansas English Language Arts Standards -
- **3.RC.1.RF** Ask questions about key details in a text. (3-ETS1-2)
- **3.RC.2.RF** Answer questions about key details in a text. (3-ETS1-2)
- **3.RC.17.RI** Explain how information gained from illustrations (e.g., maps, photographs) and the words in a text, contribute to understanding a text. (3-ETS1-2)
- 3.RC.14.RI Compare and contrast two texts on the same topic, identifying key details from each text. (3-ETS1-2)
- **3.W.9.P** Conduct short research by gathering information from relevant experiences and/or print and digital sources to produce a response. (3-ETS1-1, 3-ETS1-3)
- **3.W.10.P** Take notes from sources and sort evidence into categories. (3-ETS1-1, 3-ETS1-3)

- AR.M.2 Applying reasoning about quantities and relationships. (3-ETS1-1, 3-ETS1-2, 3-ETS1-3)
- AR.M.4 Select and use relationships and tools. (3-ETS1-1, 3-ETS1-2, 3-ETS1-3)
- **AR.M.5** Identify relationships using structure and patterns. (3-ETS1-1, 3-ETS1-2, 3-ETS1-3)
- **3.CAR.2** Use basic fact fluency to multiply and divide whole numbers with mastery by the end of third grade. Knowing all products with factors up to and including 12 and the corresponding division facts from the products with factors up to and including 12. Using strategies such as the relationship between multiplication and division (e.g., Knowing that 8 · 5 = 40, one knows 40 ÷ 5 = 8) or properties of operations. (3-ETS1-1, 3-ETS1-2)
- **3.CAR.3** Apply properties of operations as strategies to multiply and divide. Properties include: Distributive, Commutative, and Associative Properties of Multiplication. (3-ETS1-1, 3-ETS1-2)
- **3.CAR.5** Identify arithmetic patterns including, but not limited to, patterns in an addition or multiplication table, explaining use of properties of operations appropriate to the pattern. (3-ETS1-1, 3-ETS1-2)
- **3.CAR.6** Solve real-world problems using multiplication and division within 100 involving equal groups, arrays, partitive and measurement division. (3-ETS1-1, 3-ETS1-2)
- **3.CAR.7** Solve two-step real-world situations using addition, subtraction, multiplication, and division, representing these problems using equations with a symbol standing for an unknown quantity. (3-ETS1-1, 3-ETS1-2)
- **3.CAR.8** Determine the unknown whole number in a multiplication or division equation relating three whole numbers.
- 3.CAR.9 Understand division as an unknown-factor problem. (3-ETS1-1, 3-ETS1-2)
- **3.DA.2** Solve one and two-step problems, using categorical data represented with a scaled picture graph, scaled bar graph, and a line plot. (3-ETS1-1, 3-ETS1-2)

Contributors

The following educators contributed to the development of this document:

Becky Adams – Hamburg School District	Chris Lynch – Black River Technical College			
W. Chance Bankhead – eSTEM Public Charter	Tammy McCloy – El Dorado School District			
Leslie Brodie – Fort Smith School District	Laura Mewborn – Pulaski County Special School District			
Stephen Brodie – UA Fort Smith STEM Center	Melissa Miller – Farmington School District			
Cindy Cardwell – Bentonville School District	Reggie Nalls – Dollarway School District			
Pam Carpenter – Bald Knob School District	Yolanda Prim - Dollarway School District			
Debbie Daily – University of Central Arkansas	Kathy Prophet – Springdale School District			
Rosa Dumond – Arkadelphia School District	Virginia Rhame – Northwest Arkansas Education Cooperative			
Tami Eggensperger – Cabot School District	Brian Schuller – DeQueen Mena Education Cooperative			
Alana Eifert – Malvern School District	Carolyn Smith – El Dorado School District			
Linda Flynn – Farmington School District	Mary Smith – Nettleton School District			
Jenny Gammill – Fayetteville School District	Melinda Smith – Jonesboro School District			
A. Wade Geery – Norfork School District	Pam Vaughan – Camden School District			
Kyla Gentry – Searcy School District	Deborah Walker – Magnolia School District			
Josh Jenkins – Springdale School District	Greg Wertenberger – Henderson University STEM Center			
Marilyn Johnson – Little Rock School District	Rebecca Wilbern – Fayetteville School District			
Christina Johnson – North Little Rock School District	Andrew Williams – University of Arkansas at Monticello			
Debbie Jones – Sheridan School District	Gene Williams – Little Rock School District			
Tifanie King – West Memphis School District	Shawna Williams – Farmington School District			
Sandra Leiterman – Little Rock School District	Cathy Wissehr – University of Arkansas at Fayetteville			
Steven Long – Rogers School District				